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Transonic Singularities

Helmut SOBIECZKY*

Abstract
The model equations for transonic flow in the near-sonic regime are brought back to attention, as an 
example including classical flow examples as well as the challenging non-linear case of axisymmetric 
flow near Mach number unity. The purpose is to keep the fluid mechanic knowledge base by analytic 
treatment alive, to complement education of future engineers in the age of numerical simulation.
1. Introduction

Classical analytic modelling of transonic flow 
has contributed self-similar solutions to the near 
sonic partial differential equation during the past 
40 years. A mathematically elegant and, espe-
cially in pre-computer time, practically useful set 
of particular solutions was described which shed 
light into many hitherto unexplained phenomena 
of flows near the speed of sound. 
Today, with high performance computers and 
fast software to solve partial differential equa-
tions such analytic background is an ‘endangered 
species’ among the many  numerical techniques 
for complex flows. For at least two reasons, how-
ever, it seems that a certain extract of analytic 
results will be beneficial in the future:
First, a new generation of engineers will easily 
make use of theoretical results using the graphic 
illustration software as being used for CFD. This 
way model solutions will complement teaching 
tools which already use CFD results for educa-
tional purposes, which has recently been 
described in this journal  [1].
Second, despite impressive progress in CFD, 
there are still problems which require quite 

costly numerical attempts for simulation; in this 
case the existence and, even better, a handy avail-
ability of analytical models for such problems 
serves for  test cases in the development and the 
adaptation of CFD codes, in order to verify such 
solutions with improving efficiency and accu-
racy.
In the following, near sonic flow (the „mathe-
matical essence“ of transsonic flow) is mapped 
once more to hodograph variables, this way 
allowing the application of classical pre-CFD 
solution methods. Inviscid flow elements with 
interesting singular local or global behavior 
result from such approach: A relation of far field 
flow structure to specific body flow is illustrated 
here. 

2. New graphics for old flow models

Mathematicians, physicists and engineers 
equally profit from their numerical solutions´ 
graphic visualization. In pre-computer time, ana-
lytic solutions had to be illustrated by sketches 
and line diagrams. Skalar fields in suitable sec-
tions of 3D space hardly were shown. It has a 
certain attractivity to review some more complex 
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model solutions of this earlier time of transonics, 
to illustrate them with modern graphic tools: 
Some aspects of continuing interest may be kept 
alife as well as new solutions may be found 
much easier because of the availability of 
graphic visualization and animation.

3. Basic equations

Laplace´s equation or the wave equation model-
ling elliptic or hyperbolic linear potential models 
provide the basic solutions of low and high speed 
flow, respectively. Harmonic solutions for a 
velocity potential in plane 2D or axisymmetric 
physical space define a set of flow models which 
due to its simplicity stays important for educa-
tion in fluid mechanics. 
In compressible flow, a somewhat unusual uni-
fied form of the perturbation potential equation is 
investigated to apply familiar techniques of lin-
ear flow types to the non-linear ones:,

The use of 3 switch parameters (j, k, l) in this 
equation covers the following flow types:
● Integer j distinguishes between plane (j=0) 
and axisymmetric (j=1) flow.
● Integer k distinguishes between perturbed lin-
ear sub- or supersonic flow (k=0) and perturbed 
sonic flow (k=1) with γ the ratio of specific heats, 
and finally
● Integer l distinguishes between locally sub-
sonic (l= -1) and locally supersonic (l=1) flow.

Perturbation velocity components (u,v) and 
physical coordinates (x,y) may be obtained from 
similarity variables (X, Y, U, V) with free scaling 
parameters A and B

A hodograph transformation converts equation 
(1) into a set of coupled Beltrami equations (3) 
for velocity variables (U, V) and the coordinates 
of physical space (X, Y), valid in a parametric 
„Rheograph“-plane (s,t):

4. Similarity solutions

This unified system for variables of state and 
geometry (U, V, X, Y) suggests a generalization 
of the knowledge base we have for the solution 

l γ 1+( )k ϕ x
k ϕ xx⋅ ⋅ ⋅ ϕ yy– jϕ y y⁄– 0=

(1)
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of elliptic and hyperbolic problems using real 
and complex characteristics  

This is the method of conformal mapping for 
Laplace´s equation modelling the familiar case 
(j, k, l  = 0, 0, -1), the method of characteristics 
for the wave equation (j, k, l  = 0, 0, 1) and 
Stokes’ potential for axisymmetric flows. For 
plane and axisymmetric linear (k=0) problems, 
certain parallels exist and have been treated by 
Weinstein [2]. 
Remains a combination of these parameters for 
near sonic flows k=1, i. e. flow fields with a per-
turbation of sonic flow, describing either a global 
flow or a local flow pattern surrounding a spot 
with sonic flow condition. The author, 3 decades 
ago, investigated Eq. (3) for plane flow j=0, but 
axisymmetric near sonic flow j=1 remained 
much less understood and documented with ana-
lytically exact solutions. Nevertheless, a couple 
of axisymmetric flow models verifying early 
results suggested by Guderley [4] can be found 
by extending the solution techniques proven use-
ful for j = 0  to case studies with j = 1. Reviewing 
these and trying to keep the door open for further 
investigations, it seems practical to present the 
reduction to a coupled system of ODE´s and 
including a new idea for logarithmic terms which 
has proven fruitful in cases of complex flow sin-
gularities in the linear models explained above.

Separation of variables in polar coordinates,

for Eq. 3, with (r,φ) polar coordinates in (s,t), 
results in a non-linear system of coupled ODE´s 
for fu, ... and gu, ... if k=1, and j=1. It can be seen 
easily, that for the simpler linear cases j=0 and/
or k=0 the familiar exact harmonic solutions 
without logarithmic terms are resulting immedi-
ately.
Several aerodynamically interesting flow mod-
els have been found using (5), which can serve 
for accuracy tests of numerical algorithms. For 
most applications to model physically meaning-
ful flow the logarithmic terms have not been 
included yet, gu, ... = 0. With the remaining pos-
sibilities it can be shown that only the ratio 

is relevant for describing a variety of self-similar 
solutions. For near sonic flow, the complete 
model consists of both subsonic (U<0) and 
supersonic (U>0) parts with l = sign(U): 
Fig 1 is a sketch of this parametric hodograph 
plane, termed “Rheograph plane” because of the 
validity of a rheoelectric analogy initially aiding 
the understanding of boundary value problems.

ξ t s+=

η t s–=
l 1=

ξ t is+=

η t is–=
l 1–= :

:

(4a)

(4b)

U rn f u ϕ( ) rln gu ϕ( )⋅+( )⋅=

V rn j b⋅+ f v ϕ( ) rln gv ϕ( )⋅+( )⋅=

X rb k n⋅ 3⁄+ f u ϕ( ) rln gx ϕ( )⋅+( )⋅=

Y rb f y ϕ( ) rln g y ϕ( )⋅+( )⋅=

(5)

ν n b⁄= (6)
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Connecting both parts of the solution to repre-
sent a mixed type flow example with smooth 
transition from subsonic to supersonic flow is 
then suitably carried out by choosing a value φ* 
from which to integrate the system for the 
ODE´s in different directions of the polar angle 
φ. Isofringes visualization of the results in physi-
cal variables U,V(X,Y) is carried out easily for a 
given solution (5): Global and local solutions for 
perturbed compressible flow can be discussed 
this way.  
To illustrate the potential of this flow modelling, 
a well-known exact supersonic flow model is 
identified to have a near sonic version, which 
was never found by other transonic methods, and 
finally we discuss the definition of body flows in 
sonic free-stream conditions.

5. Conical flow and the near sonic equation

As it is well-known from the literature, Taylor 
and Maccoll [5] have described supersonic flow 
past a cone with attached bow wave 20 years 
before the family of near sonic self similar solu-
tions [4] has been presented, then with only a 
few practical applications. Supporting conical 
behavior, parameter ν = n/b must be zero, with 

n=0 and b=1 to obtain a welcome proportionality 
between the independent Rheograph variables 
(s,t) and the resulting physical coordinates of the 
meridional plane (X,Y). This   solution was pre-
sented in [6]. For another investigation we used 
an inverse method of characteristics [7] for the 
full axisymmetric Euler equations to design a 
supersonic cone flow. An extension of the solu-
tion toward the axis within the cone body was 
found where the solution ran into a limit cone 
turning back onto itself, forming a second lobe 
of the flow model within the same physical 
space. This way the axis cannot be reached 
which is consistent with the familiar example 
that a 2D supersonic source/sink model does not 
include the origin. The near sonic conical solu-
tion results in the same phenomenon by a singu-
lar behavior of the solutions fu, fv, fx(φ) before a 
zero of  fy(φ), indicating the axis Y=0, is 
reached. 
We consider it an advantage of the near sonic 
equation in its shape (3) to have yielded conical 
flow so easily, while the pioneering work dealing 
with (1) after the Taylor-Maccoll solution being 
already well-known, did not identify its near 
sonic version.

t

s

U* = 0, V*(t), X*(t), Y*(t)

l = 1: U>0l = -1: U<0

P(r,φ)

π/4

ξ

Fig. 1: Rheograph plane for near sonic flow:
Polar coordinates and domain separation

Fig. 2: Conical flow: Analytical continuation of the flow 
model within the solid cone yields a limit cone.
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6. Far field singularities and body flows

One of the most challenging goals of analyzing 
solutions to the axisymmetric near sonic equa-
tion in its shape (1) was the finding of  the far 
field behavior of a body in sonic flow Minf = 1. 
Following the flow topology analysis of Guder-
ley [4] the ratio ν = n/b = -9/7, again without 
needing the logarithmic terms, yields this solu-
tion. 
For plane 2D flow (j = 0) the field is found with ν
= n/b = -5/4, the values result from the require-
ments to represent a body with finite length in 
sonic flow (Fig. 3). This is achieved by obtaining 
a flow with a regular behavior at the limit charac-
teristic (ξ-axis in Fig. 1) providing the freedom 
to continue and closing the body downstream of 
this limit. Parameters ν > -9/7  result in body 

flows which do not permit a closing: all charac-
teristics along the body in the supersonic domain 
reach the sonic line and will therefore influence 
the subsonic domain, the solution is valid only 
for the infinitely long half body: Fig. 4 shows 
body and flow field for  ν = -9/8. 
The general relation between sonic line and body 
contour is found to be 

whithin a range of 1/4 < α < 1. 

Fig. 3: Guderley´s sonic dipole flow: Isobar 
visualization; sonic line y*(x) ~ x7/4 and limit line 
ylimit(x) ~ x7/4, consistent with front body radius ybody ~ 
x1/4 and arbitrary continuation to obtain a closed body.
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Fig. 4: Half body radius ybody ~ x2/5 of infinite length in 
sonic free stream conditions. Sonic line y*(x) ~ x8/5, no 
limit line.
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7. Other results

A bewildering variety of solutions to the system 
of ODE´s resulting from the quasi-harmonic 
ansatz (5) can be found, challenging an interpre-
tation as flow models with special topology. For 
k=0 the type parameters j and l include all har-
monic potential solutions for Laplace´s and wave 
equation. The logarithmic extension allows for 
more complex boundary value problems like the 
problem of the normal shock on the curved wall 
as suggested by Gadd [8]. There seem still many 
more possibilities to use these models for analyt-
ical description of local and global flows. 
For linear equations (3), (j,k=0,1 and j,k=1,0), 
superimposition of particular solutions is the 
method for constructing flows with arbitrary 
boundary values. For the non-linear system mod-
elling axisymmetric near sonic flow, numerical 
techniques based on iterative updating suitably 
linearized equations, guided by the exact linear 
systems are suggested but experience with this 
approach is small.

8. Conclusion

An effort is made to keep small disturbance the-
ory alive in the age of numerical simulation of 
complex flow problems: A unified approach is 
pointed out to illustrate relationship between 
very familiar solutions to potential theory and 
the relatively poorly investigated near sonic axi-
symmetric flows, which do not result in linear 
equations by transformation to hodograph vari-
ables. Nevertheless the mapping of axisymmetric 
flow to a hodograph plane is illustrative and car-
ries many results hitherto unexploited.  The 
problem of creating body flows in Mach number 
unity has been chosen here to illustrate one of 

many challenges to find and to interpret solutions 
to the non-linear equations.
Education of a future generation of aerospace 
engineers will need model problems to support 
the development of  creativity in design with a 
solid mathematical background trained in case 
studies like the ones briefly illustrated here.

9. References

1. Hafez, M. (Ed.), “CFD and Education“ Spe-
cial Issue, Computational Fluid Dynamics 
Journal, Vol.9, No.3, 2000.

2. Weinstein, A., “Generalized Axially Sym-
metric Potential Theory“, Bull. Amer. Math. 
Soc. Vol. 59, pp. 20-38, (1953)

3. Sobieczky, H., “Related Analytical, Anolog 
and Numerical Methods in Transonic Airfoil 
Design“, AIAA paper 79-1556 (1980)

4. Guderley, K.G., “Theory of Transonic Flow“, 
Springer, Berlin, Göttingen, Heidelberg 
(1958)

5. Taylor, G.I., Maccoll, J.W., “The Air Pres-
sure on a Cone Moving at High Speeds”, 
Proc. Roy. Soc. A139, pp.278-311, (1935)

6. Sobieczky, H., „On Conical Flow“, AIAA-
98-2594 (1998)

7. Sobieczky, H., Qian, Y.J., “Extended Map-
ping and Characteristics Techniques for 
Inverse Aerodynamic Design“. Proc. Int. 
Conference on Inverse Design Concepts and 
Optimization in Engineering Sciences, 
(ICIDES III), Washington, D.C. (1991)

8. Gadd, G. E., “The Possibility of Normal 
Shock Waves on a Body with Convex Sur-
faces in Inviscid Transonic Flow“, ZAMP 11, 
p. 51-55 (1960)
-6-


	1. Introduction
	2. New graphics for old flow models
	3. Basic equations
	4. Similarity solutions
	5. Conical flow and the near sonic equation
	6. Far field singularities and body flows
	7. Other results
	8. Conclusion
	9. References
	1. Hafez, M. (Ed.), “CFD and Education“ Special Issue, Computational Fluid Dynamics Journal, Vol.9, No.3, 2000.
	2. Weinstein, A., “Generalized Axially Symmetric Potential Theory“, Bull. Amer. Math. Soc. Vol. 59, pp. 20-38, (1953)
	3. Sobieczky, H., “Related Analytical, Anolog and Numerical Methods in Transonic Airfoil Design“, AIAA paper 79-1556 (1980)
	4. Guderley, K.G., “Theory of Transonic Flow“, Springer, Berlin, Göttingen, Heidelberg (1958)
	5. Taylor, G.I., Maccoll, J.W., “The Air Pressure on a Cone Moving at High Speeds”, Proc. Roy. Soc. A139, pp.278-311, (1935)
	6. Sobieczky, H., „On Conical Flow“, AIAA- 98-2594 (1998)
	7. Sobieczky, H., Qian, Y.J., “Extended Mapping and Characteristics Techniques for Inverse Aerodynamic Design“. Proc. Int. Conference on Inverse Design Concepts and Optimization in Engineering Sciences, (ICIDES III), Washington, D.C. (1991)
	8. Gadd, G. E., “The Possibility of Normal Shock Waves on a Body with Convex Surfaces in Inviscid Transonic Flow“, ZAMP 11, p. 51-55 (1960)

	Transonic Singularities

